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The interface stability against small perturbations of the planar solid-liquid interface is considered analyti-
cally in linear approximation. Following the analytical procedure of Trivedi and Kurz[R. Trivedi and W. Kurz,
Acta Metall. 34, 1663(1986)], which is advancing the original treatment of morphological stability by Mullins
and Sekerka[W. W. Mullins and R. F. Sekerka, J. Appl. Phys.35, 444 (1964)] to the case of rapid solidifi-
cation, we extend the model by introducing the local nonequilibrium in the solute diffusion field around the
interface. A solution to the heat- and mass-transport problem around the perturbed interface is given in the
presence of the local nonequilibrium solute diffusion. Using the developing local nonequilibrium model of
solidification, the self-consistent analysis of linear morphological stability is presented with the attribution to
the marginal(neutral) and absolute morphological stability of a rapidly moving interface. Special consideration
of the interface stability for the cases of solidification in negative and positive thermal gradients is given. A
quantitative comparison of the model predictions for the absolute morphological stability is presented with
regard to experimental results of Hoglund and Aziz[D. E. Hoglund and M. J. Aziz, inKinetics of Phase
Transformations, edited by M.O. Thompson, M. J. Aziz, and G. B. Stephenson, MRS Symposia Proceedings
No. 205(Materials Research Society, Pittsburgh, 1991), p. 325] on critical solute concentration for the interface
breakdown during rapid solidification of Si-Sn alloys.
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I. INTRODUCTION

In the solidification of liquids, an initial solid-liquid inter-
face is subject to unstable growth which leads to various
crystal patterns of cellular, dendritic, banded, fractal, etc.,
morphologies[1–3]. A scheme of changing the crystal mor-
phology with the interface velocity can be considered in the
example of one-phase solidification, i.e., when the liquid
transfers into solid without precipitation of additional phases.
Figure 1 shows schematically the steady-state growth mor-
phologies which form in a liquid as a result of morphological
instability at given interface velocityV in single-phase so-
lidification. With a small velocity, an initially smooth inter-
face remains planar up to a velocity equal to the critical
velocity VC defined by the constitutional undercooling[4].
Behind VC, the smooth interface becomes unstable and the
interface exhibits a steady cellular morphology. By further
increasing the velocity, a surface of cells may become un-
stable with the developing of dendritic patterns. At high in-
terface velocity, dendritic patterns degenerate with the ap-
pearing of rapidly moving cells. A demarcation line atV
=VA divides the regions between the interface instability,
V,VA, and the absolute stability,V.VA, where the planar
interface is morphologically stable against small perturba-
tions of its form. This demarcation is usually known as the
critical velocity VA for absolute stability of the planar inter-

face. The sequence of growth morphologies, Fig. 1, is well
known from experiments on directional solidification and so-
lidification in the undercooled state[5]. It has been demon-
strated in computational modeling[6] of crystal growth as
well.

The theory of morphological stability was developed first
by Mullins and Sekerka, who considered the stability of a
spherical particle grown into a supersaturated solution[7],
and stability of the planar front during directional solidifica-
tion of a binary liquid[8]. In investigating the evolution of
small harmonic perturbations of the planar interface[8], they
provided a rigorous basis of linear morphological(in)stabil-
ity at low solidification velocity. Particularly, Mullins and
Sekerka introduced a concept of marginal stability for the
wavelength of perturbation, which gives neutral stability of
the plane when the amplitude of perturbation does not
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FIG. 1. Morphological diagram for solidification of binary sys-
tems, which is illustrating the microstructural transitions “planar
front” → “cellular structure”→ “dendrites”→ “cellular structure”
→ “planar front,” with the increasing of the solidification velocity
V. HereVC is the velocity given by the criterion of constitutional
undercooling, andVA is the velocity for absolute morphological
stability of the interface.
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change in time. Behind the critical velocity of the marginal
stability, the increasing of the amplitude of perturbation in
time may lead to cellular or dendritic interfaces. The theory
[8] gave rise to a great number of investigations of morpho-
logical transformations due to linear instability of interfaces
and nonlinear behavior of unstable interfaces. These are pre-
sented in an overview by Coriell and McFadden[9] and a
monograph by Davis[10].

In its classic form[8], the theory assumes a local equilib-
rium at the interface, which is an excellent approximation for
many metallic systems solidifying at small interface veloci-
ties. At large driving force for the interface advancing, and
with the increasing of its velocity, the analysis of Mullins
and Sekerka can be modified. Trivedi and Kurz[11] ad-
vanced the analysis of Mullins and Sekerka[8] for the case
of rapid solidification, and introduced the stability functions
dependent on the interface velocity. By taking into account
the velocity dependent coefficient of solute redistribution
(partitioning function), they developed an analytical model
[12] of microstructure formation under directional solidifica-
tion, over the range from low interface velocity up to veloc-
ity VA of absolute morphological stability.

In addition to the previous analysis of pattern formation
and morphological stability of the interface in which the
treatment is extended to rapid solidification[11] and non-
equilibrium effects at the interface[12], the local nonequilib-
rium in bulk phases may play an essential role in rapid so-
lidification. Particularly, a deviation from local equilibrium
in solute diffusion may act on the rapid advancing of the
solid-liquid interface because the interface velocityV can be
of the order of or even greater than the solute diffusion speed
VD in bulk phases. For instance, the diffusion speed can be of
the order of[13] VD,0.1−10 m/s. In modern experiments
on solidification of undercooled droplets the interface veloc-
ity approaches[14] V,10−100 m/s. Therefore, the under-
cooling of liquids is sufficient for detecting solidification
with the interface velocity comparable to the diffusion speed.

Considering the process of solute diffusion, Fick’s first
law is obtained on the basis of classic irreversible thermody-
namics of Onsager and Prigogine which assumes propaga-
tion of concentration disturbances with an infinite speed and
with local equilibrium in the bulk phases[15]. Local equi-
librium is characterized by the statistical distribution func-
tion, given by the first order term of its expansion[16]. How-
ever, for a high-velocity solidification front, the time for
crystallizing of a local volume is comparable to the time for
relaxation of the diffusion flux to its steady-state value[13].
In this case, local equilibrium is absent in the bulk phases
and the solute flux cannot be described by the classical
Fick’s first law. Including the evolution equation for the dif-
fusion flux, the analysis of Galenko and Sobolev[17] shows
that the deviations from local equilibrium in phases and at
the interface drastically affect both the solute diffusion and
the interface kinetics. Therefore, in this paper we consider
the linear stability analysis for a rapidly moving interface
under local nonequilibrium solute diffusion.

The linear morphological analysis of the interface stabil-
ity has been developed and used to obtain a stable tip of
dendrite growing under local nonequilibrium solute diffusion
in rapid solidification[18]. A marginal stability criterion was

used and concluded that atV=VD the complete transition to
diffusionless solidification may proceed sharply, with the ap-
pearing of the break point in the kinetic curves “dendrite tip
velocity—undercooling” and “dendrite tip radius—
undercooling.” In addition to this, Leeet al. [19] performed
the linear stability analysis in rapid directional solidification
using the model of Galenko and Sobolev[17]. As they
showed[19], the effect of the local nonequilibrium in solute
diffusion postpones the onset of the cellular instability in
better agreement with experimental data, in comparison with
the model predictions in which the local nonequilibrium only
at the interface is considered. However, the analysis of Leeet
al. [19] was not self-consistent(in the analysis, the authors
used an expression for the slope of kinetic liquidus obtained
from the local equilibrium thermodynamics). As it has been
noted in Ref.[18], the predictions of rapid solidification of
alloys can be satisfactory compared with experimental data
only on the basis of self-consistent model(i.e., when all
model functions are taking into account the deviation from
local equilibrium in the solute diffusion field). Consequently,
the first purposeof the present paper is to analyze the mor-
phological stability of the planar interface on the basis of the
self-consistent model of local nonequilibrium solidification.

In the present analysis, special consideration is paid to the
stability of the interface around the demarcation line,V=VA,
below which the interface instability occurs and behind
which the absolute morphological stability proceeds as
shown in Fig. 1. This transition is known from the experi-
ment as a transition from cellular patterns to the segregation-
free patterns[20,21]. The crystal microstructure after the
transition is shown in Fig. 2. As it has been stated[22], the
transition from the macroscopically smooth solid-liquid in-
terface to the cellular-dendritic microstructures occurs with
the decreasing of the interface velocityV below critical ve-
locity VA for absolute stability of the planar front. Around the
velocity V=VA, the kinetics of crystal growth begin to dis-

FIG. 2. Optical micrograph of longitudinal through-thickness
section of a melt-spun ribbon of Ni-18 at. % B alloy[22]. The
ribbon was produced with the spinning velocity of 120 m/s and
with the thickness of 35mm. The crystal microstructure exhibits a
transition from planar interface with solute segregation-free to
cellular-dendritic patterns. The transition proceeds due to decreas-
ing of the interface velocity fromV.VA up to V,VA. Wheel sur-
face at bottom of micrograph.
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agree with the predictions of the model in which the local
nonequilibrium only at the interface is considered(see the
results of analysis in Ref.[18]). Consequently, thesecond
purposeof this paper is a quantitative evaluation of the dis-
crepancy between the local nonequilibrium model and the
model in which the local nonequilibrium only at the interface
is taken. It is also in comparison with the experimental data
on morphological stability of the interface in solidifying al-
loy.

The paper is organized as follows. In Sec. II we give a
formal description of departure from local equilibrium due to
solute diffusion and give a set of governing equations to
analyze the morphological stability of the interface. In Sec.
III we analyze the influence of perturbations in fields and at
the interface on the linear stability of the planar interface. In
Sec. IV, an obtained criterion of marginal(neutral) stability
allows us to analyze the morphological stability of the inter-
face for the case of solidification in undercooled liquid(with
negative temperature gradient) and for the directional solidi-
fication (with the positive temperature gradient). The abso-
lute stability of the planar interface is analyzed in Sec. V. A
discussion about expressions for solute trapping and kinetic
liquidus which define a final form of the function for the
absolute stability of the planar interface is given in Sec. VI.
Also, in this section, we compare the derived function for the
absolute interface stability with the available experimental
results obtained in Si-Sn alloy solidification. Finally, in Sec.
VII we present a summary of our conclusions.

II. STATEMENT OF THE PROBLEM

We consider a dilute binary alloy that undergoes noniso-
thermal solidification in infinite space. Let us take into ac-
count the heat diffusion in phases, solute diffusion in the
liquid, and one can neglect the solute diffusion in solid. The
main physical assumption of the present problem is an ab-
sence of local equilibrium both at the solid-liquid interface
and in the solute diffusion field around the interface. In this
case, the degree of local nonequilibrium is estimated by the
relation of the interface velocityV and the diffusion speed
VD which is a parameter of the process of diffusion and can
have different values at the interface and in bulk phases. The
speedVD is a maximum speed of propagation of the diffu-
sion profile in the system and defined asVD=sD /tDd1/2,
whereD is the diffusion coefficient, andtD is the time of
relaxation of diffusion flux to its steady-state value. There-
fore, we develop the rapid solidification model which is tak-
ing into account the finiteness of the diffusion speed in the
system.

A. Departure from local equilibrium

If local thermodynamic equilibrium in the bulk is not
reached, the connection between the vectors of diffusion

fluxes,qW i andJW, and the driving forces,=Ti and=C, for the
heat and solute diffusion, respectively, have the following
integral form. Relaxation of the heat flux is

qW isrW,td = −E
−`

t

Dq
i st − t*d = Tist* ,rWddt* . s1d

Relaxation of the solute diffusion flux is

JWsrW,td = −E
−`

t

Djst − t*d = Cst* ,rWddt* , s2d

where indexi =L or i =S is related to the liquid or solid
phases, respectively.Ti are the temperatures in the phases,C
is the solute concentration in the liquid,t is the time,rW is the
radius vector of a point in the system, andDRst− t*d are the
relaxation functions of the fluxes(R=q or R= j). Equations
(1) and(2) imply the fact that when the interface moves with
a high velocity, local equilibrium in the fields does not occur
and the diffusion fluxes at a point in the system no longer
depend on the instantaneous gradients of the temperature and
chemical composition, but are also determined by the local
prehistory of the solidification process.

Equations(1) and (2) represent general expressions for
evolution prehistory of the diffusion processes. For the case
of heat diffusion, when the heat propagates with much higher
speed in comparison with the interface velocity, the influence
of local nonequilibrium in the temperature field on the kinet-
ics of the interface advancing is negligible(see the analysis
of heat transfer in rapid solidification in Ref.[23]). There-
fore, we specially define the relaxation functionsDR in Eqs.
(1) and (2) for the important class of dissipative hyperbolic
models in which they take the following forms:

Dq
i st − t*d = Dq

i s0ddst − t*d, s3d

Djst − t*d = Djs0dexpS−
t − t*

tD
D , s4d

whereDq
i s0d=Ki are the thermal conductivity in the liquid

si =Ld and solid si =Sd, d is the Dirac delta function, and
Djs0d=D /tD is a value of relaxation function for solute dif-
fusion at a momentt= t* .

Equation(3) describes an instant relaxation which occurs
at a momentt= t* . Therefore, one can expect a description of
local equilibrium heat transport by the function(3) in com-
bination with Eq.(1). In contrast to this, the relaxation func-
tion (4) with the flux prehistory(2) leads to local nonequi-
librium solute diffusion. In usual circumstances, the
relaxation timetD for diffusion flux is very small and the
relaxation effects are negligible. It is usual to speak in this
case of “viscous diffusion” which can be accurately de-
scribed by the Fickian local equilibrium approximation.
However, Eqs.(2) and (4) describe relevant difference of
solute diffusion with respect to the classical Fick’s law. To
date, departures from this law are known as the appearance
of internal effects, couplings of diffusion and viscosity, and
longitudinal diffusion (see Refs.[24–26] and references
therein). In addition to these appearances, Eqs.(2) and (4)
can also be applied to the process of the phase transition in a
strongly nonequilibrium medium. Rapid solidification of a
binary melt is a good example of such a nonequilibrium
phase transition in which the interface can move with the
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high velocity comparable with the diffusive speed,V,VD
,0.1−10sm/sd [13]. In this case, the time for crystallizing
of local bulk is of the order of the relaxation time of the
solute diffusion flux[13,17,18], characterizing its decay for-
ward of its local equilibrium value. Therefore, whenV
,VD, the relaxation interacts with the diffusion process di-
rectly, and it is necessary to take into account the local pre-
history of the solute diffusion, e.g., in a form described by
Eqs.(2) and (4).

Equation(4) simulates a physically reasonable situation in
which exponential decay of the diffusion flux occurs in the
local bulk of the liquid phase. This equation provides the
lowest order of approximation of the diffusion flux relax-
ation. Indeed, substituting Eqs.(3) and (4) for Eqs. (1) and
(2), respectively, one obtains

qW i + Ki = Ti = 0, s5d

tD
] JW

] t
+ JW + D = C = 0. s6d

Equation(5) is a well-known Fourier law which is true for
infinite thermal speed in the system, i.e., the heat diffusion
flux is instantly relaxed to its local equilibrium value and the
effects of local nonequilibrium in the thermal field are neg-
ligible. Equation(6) can be treated as the simplest generali-

zation of the classical Fick’s first lawJW +D=C=0 that is
recovered whentD=0 or in stationary situations in which

]JW /]t=0. The evolution equation(6) takes into account the
relaxation to local equilibrium of the mass flux and is known
as the Maxwell-Cattaneo equation in the context of heat
transport[25,26]. By taking the relaxation(2) with the expo-

nential law (4), it follows from Eq. (6) that the fluxJW at a
point in the system is defined by the evolution of the con-
centration gradient=Cst* ,rWd during the periodt−tD, t* , t,
but not by the gradient=Cst ,rWd at the momentt, as in local
equilibrium approximation. Thus, taking into account the ex-
ponential decay for the relaxation of the diffusion flux[see
Eq. (4)], the simplest evolution equation(6) is obtained for
the interaction of the relaxation process and solute diffusion.
Instead of Eq.(6), by taking suitable relations for the func-
tions of DsCd, Ds]C/]td, or Ds=Cd, one can describe more
complicated situations for non-Fickian diffusion in nonequi-
librium media. These are described by the evolution equation
with the higher-order time derivatives or couplings of relax-
ation to nonlocal effects for transient processes[25].

The heat and solute diffusion are governed by the balance
laws

xi
] Ti

] t
+ = ·qW i = 0, s7d

] C

] t
+ = ·JW = 0, s8d

where xi are the heat capacities in phases. Substitution of
Eqs.(5) and(6) into Eqs.(7) and(8), respectively, gives the
following system of equations:

] Ti

] t
= ai¹

2Ti , s9d

tD
]2C

] t2
+

] C

] t
= D¹2C, s10d

whereai are the thermal diffusivities in the liquidsi =Ld and
solid si =Sd. Equation(9) is the common partial differential
equation of parabolic type for the heat transfer which adopts
the infinite thermal speed. Equation(10) shows that Eqs.(6)
and (8) give rise to the partial differential equation of a hy-
perbolic type for the solute concentration, which is the sim-
plest mathematical model combining the diffusive(dissipa-
tive) mode and the propagative(wave) mode of mass
transport under local nonequilibrium conditions. In such a
case, Eq.(10) describes the transport process under non-
Fickian diffusion.

After integration of Eqs.(9) and(10) over an infinitesimal
zone that includes the interface, the following boundary con-
ditions for the diffusion transport hold:

− KL=nTL + KS=nTS= QVn, s11d

− D=nC = sC − CSdVn + tD
]

] t
fsC − CSdVng, s12d

whereQ is the latent heat of solidification,=nTi and=nC are
the normal gradients of temperature and solute concentration
to the interface, respectively,Vn is the normal velocity of the
interface,CS is the solute concentration at the interface in the
solid phase given by expression

CS= kC, s13d

andk is the coefficient of solute partitioning at the interface.

B. Governing equations

Under the assumptions drawn in Sec. II A we consider the
governing equations for analysis of the morphological stabil-
ity of the planar interface against small perturbations of its
form. Our analysis is based on the analysis given by Trivedi
and Kurz[11] which is advancing the treatment of Mullins
and Sekerka[8] to the case of rapid solidification.

The analysis of interface stability is given further in the
reference frame moving with the constant velocityV. We
shall consider the case when the planar interface given by
equationzsxd=0 moves along thez axis of the Cartesian
coordinate systemsx,zd. Then the two-dimensional steady-
state fields of the solute concentration and temperature are
obtained from Eqs.(9) and (10) as

]2C

] x2 + S1 −
V2

VD
2 D ]2C

] z2 +
V

D

] C

] z
= 0, s14d

]2TL

] x2 +
]2TL

] z2 +
V

aL

] TL

] z
= 0, s15d
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]2TS

] x2 +
]2TS

] z2 +
V

aS

] TS

] z
= 0. s16d

Following the standard procedure of the analysis of the
morphological stability, let us place harmonic perturbation
on the planar interface. The perturbation is described by

z; fsx,td = dstdsinsvxd, s17d

where d is a small amplitude of perturbationsudu!1d, v
=2p /l is the cyclic frequency with the wavelengthl. The
response functions on the perturbed interfacefsx,td, i.e., the
temperatureTf and solute concentrationCf are defined by
the following relation:

Tf = Tm + mCf + GK, s18d

wherem is the slope of the liquidus line in the kinetic phase
diagram (i.e., phase diagram for nonequilibrium solidifica-
tion of a binary system), G is the Gibbs-Thomson coefficient
(i.e., the capillary parameter defined by the surface energy of
the interface), andK is the mean curvature of the perturbed
interface.

For the sake of simplicity of the following analysis, the
kinetic term V/m (in which m is the kinetic coefficient of
atomic attachment to the interface) is omitted in Eq.(18).
This simplification has no influence on the main results of
the present analysis due to the fact that a constant kinetic
coefficient does not affect the marginal condition of the front
stability [9,27]. It has been shown that the kinetic effects
influence the interface stability in the case where temperature
dependence of the kinetic coefficient[27], or when an opti-
mum stability conjecture for selection of the interface oper-
ating state, is used[28].

Considering only the terms of the first order of smallness
by the amplituded of perturbation, one can obtain for the
curvature of the perturbed interface the following expression:

K = S ]2f

] x2DF1 +S ] f

] x
D2G−3/2

= − dv2sinsvxd. s19d

Thus, the system(14)–(18) is the extension of the model for
the case of significant deviations from local equilibrium in
the solute diffusion field during rapid solidification. In the
case of the local equilibrium solute diffusion, i.e., asVD
→`, Eq. (14) describes the approximation of Fick’s diffu-
sion which has been used in the existing models(see, e.g.,
Ref. [2]). The system(14)–(18) has been used in the descrip-
tion of local nonequilibrium solidification with planar and
nonplanar solid-liquid interfaces[17,18,29,30]. With the
definition of the functions for solute partitioningksVd and the
liquidus slopemsVd, the system of Eqs.(14)–(19) can be also
applied to the problem of morphological stability of the in-
terfaces in rapid solidification.

III. MORPHOLOGICAL STABILITY

Within the linear analysis of stability, a solution of Eqs.
(14)–(16) on the perturbed interface(17) is described by

Cf = C0 + bdstdsinsvxd, s20d

Tf = T0 + adstdsinsvxd, s21d

whereT0 andC0 are the values for the temperature and sol-
ute concentration for the unperturbed planar interface, re-
spectively, and the parametersb anda define the correspond-
ing corrections to the small perturbations on it. Taking into
account the small magnitude of perturbations on the planar
interface, the perturbed steady-state solution for solute con-
centration can also be presented in a form proportional to
dstdsinsvxd. This leads to the following expression:

Csx,zd = C̄szd + Fszddstdsinsvxd, s22d

whereC̄szd is the solute distribution for the planar interface.
The function Fszd is defined from Eq.(20). The far-field
condition takes the value for the planar interface, i.e.,Fszd
→0 with z→`.

Substitution of Eq.(22) into solute diffusion equation(14)
leads to the following approximations. In the zero order of
magnitude by the amplitude of perturbationd,

s1 − V2/VD
2 d

d2C̄

dz2 +
V

D

dC̄

dz
= 0. s23d

In the first order of magnitude by the amplitude of perturba-
tion d,

s1 − V2/VD
2 d

d2F

dz2 +
V

D

dF

dz
− v2F = 0. s24d

A general solution of Eq.(23) has the following form:

C̄szd = C1 + C2 expS−
Vz

Ds1 − V2/VD
2 dD . s25d

Solution (25) must be limited atz→` and it satisfies the

following conditions: C̄uz=0=C0 and dC̄/dzuz=0=GC, where
GC is the concentration gradient at the unperturbed interface.
Solution(25) satisfies these conditions in the following form:

Cszd = C0 +
GCDs1 − V2/VD

2 d
V

3 F1 − expS−
Vz

Ds1 − V2/VD
2 dDG, V , VD,

Cszd = C0, V ù VD. s26d

A general solution of Eq.(24) has the following form

Fszd = F0 expS−
V + fV2 + 4D2s1 − V2/VD

2 dv2g1/2

2Ds1 − V2/VD
2 d

zD
+ F1 expS−

V − fV2 + 4D2s1 − V2/VD
2 dv2g1/2

2Ds1 − V2/VD
2 d

zD .

s27d

Solution (27) must be limited atz→` and it takes only the
real values for anyv. In this case, Eq.(27) leads to the
following particular solution
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Fszd = F0 expS−
vCz

s1 − V2/VD
2 d1/2D, V , VD,

Fszd = 0, V ù VD. s28d

HereF0 is a constant of integration, and the frequencyvC is
related to the frequencyv of the perturbation as

vC =
V

2Ds1 − V2/VD
2 d1/2 + FS V

2Ds1 − V2/VD
2 d1/2D2

+ v2G1/2

.

s29d

Note that once the interface velocity is equal to or greater
than the diffusion speed,VùVD, solution(27) takes the zero
values for both constants of integration.F0=0 is due to lim-
iting of the solution at the infinite pointz→`, andF1=0 is
for getting the real solution ofFszd. Hence, from Eqs.(26)
and (28) one can obtain that, withVùVD, the coefficientb
=0 in Eq. (20).

For obtainingF0 it is necessary that Eq.(22), after sub-
stitution of Eqs.(26) and (28), must satisfy Eq.(20) on the
perturbed interface(17) in the first order of magnitude. It
leads to the following expression:

F0 = b − GC. s30d

Hence, substituting Eqs.(26) and (28)–(30) into Eq. (22),
one gets an expression for the perturbed field of solute con-
centration. This yields

C − C0 =
GCDs1 − V2/VD

2 d
V

F1 − expS−
Vz

Ds1 − V2/VD
2 dDG

+ sb − GCddstdsinsvxd

3expS−
vCz

s1 − V2/VD
2 d1/2D, V , VD,

C − C0 = 0, V ù VD. s31d

Within the local equilibrium limit VD→` (i.e., when the
interface velocity is much smaller than the diffusion speed,
V!VD), solution (31) transforms into solution obtained in
Ref. [11] for the case of the local equilibrium solute diffusion
transport. Furthermore, as Eq.(31) shows, with the velocities
equal to or greater than the solute diffusion speed the con-
centration does not depend on the interfacial perturbations
and is equal to those ones at the planar interface. It is known
from solution given in Ref.[17] that the solute concentration
at the unperturbed planar interface is described by

Cszd − C` =
1 − k

k
C` expS−

Vz

Ds1 − V2/VD
2 dD, V , VD,

Cszd − C` = 0, V ù VD, s32d

whereC` is the solute concentration in the liquid far from
the interface(i.e., nominal concentration). Then, from Eqs.
(31) and (32) it is clear that

Csx,zd = C0 ; C` with V ù VD. s33d

Therefore, even in the presence of perturbations, a transition
to the complete partitionless solidification,Csx,zd=C`, pro-
ceeds with the finite velocitiesVùVD.

A solution of Eqs.(15) and(16) for the heat transfer with
the condition(21) is obtained in Ref.[11] and has the fol-
lowing form:

TL − T0 =
GLaL

V
F1 − expS−

Vz

aL
DG

+ sa − GLddstdsinsvxdexps− vLzd, s34d

TS− T0 =
GSaS

V
F1 − expS−

Vz

aS
DG

+ sa − GSddstdsinsvxdexpsvSzd, s35d

where GL and GS are the gradients of temperature in the
liquid and solid on the unperturbed planar interface, respec-
tively. The frequenciesvL andvC are described by

vL =
V

2aL
+ FS V

2aL
D2

+ v2G1/2

, s36d

vS= −
V

2aS
+ FS V

2aS
D2

+ v2G1/2

. s37d

Using the transport balances(11) and (12), the boundary
conditions on the perturbed interfacefsx,td, Eq. (17), are
obtained for the steady-state regime of solidification as fol-
lows:

− KLU ] TL

] z
U

f

+ KSU ] TS

] z
U

f

= QṼ, s38d

− Ds1 − Ṽ2/VD
2 dU ] C

] z
U

f

=s1 − kdṼCf. s39d

HereṼ is the velocity of the perturbed interface. Substitution

of the expressionṼ=V+sdd /dtdsinsvxd for the velocity of
the perturbed interface into Eqs.(38) and(39) gives the con-
dition of stability regarding the sign of the function
d−1dd /dt. The concrete form of the functiond−1dd /dt is ob-
tained as follows.

In the zero order of magnitude by the amplitudedstd of
perturbation, substitution of Eqs.(19)–(21) into Eq. (18)
gives the following relation:

T0 = Tm + mC0, s40d

for the temperatureT0 and solute concentrationC0 on the
unperturbed planar interface. Equation(40) is also consistent
with the liquidus line in the kinetic diagram of phase state. In
the first order of magnitude by the amplitudedstd, one gets a
relation between coefficientsa andb in Eqs. (20) and (21).
This yields
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a = mb− Gv2. s41d

Equation(41) gives a linear relation for the corrections to the
temperature and solute concentration on the perturbed inter-
face and uses Gibbs-Thomson effect for the curved interface.
For the heat balance at the interface, let us now substitute

Ṽ=V+sdd /dtdsinsvxd for the interface velocity into the con-
dition (38). Then, in the zero order of magnitude by the
amplitudedstd, one gets a relation for the temperature gradi-
ents and the velocity of the unperturbed planar interface.
This is

− KLGL + KSGS= QV. s42d

In the first order of magnitude one gets the following
expression:

Q
1

d

dd

dt
= asKLvL + KSvSd + KLGLsV/aL − vLd

− KSGSsV/aS+ vSd, s43d

which gives the change of the amplitudedstd of perturbation
in time according to the heat balance. Substituting expression

Ṽ=V+sdd /dtdsinsvxd into the mass balance(39), one can
get in the zero order of magnitude a relation for the gradient
of concentration, interface velocity and solute concentration
in the following form:

− Ds1 − V2/VD
2 dGC = s1 − kdVC0. s44d

According to Eq.(39), the change of the amplitudedstd of
perturbation in time is defined by the first order of smallness
by the amplitude of perturbation. This yields

sC0 − 2DGCV/VD
2 d

1

d

dd

dt
= bfDvCs1 − V2/VD

2 d1/2 − s1 − kdVg

+ GCfV − DvCs1 − V2/VD
2 d1/2g.

s45d

Note that due to introduction of the finite speedVD of
solute diffusion into the model, an additional term,
−2DGCV/VD

2 , has appeared in the left-hand side of Eq.(45)
in comparison to the analysis in Ref.[11]. The prefactor
sC0−2DGCV/VD

2 d has a positively defined value: one gets
sC0−2DGCV/VD

2 d.0 due to negative concentrational gradi-
ent GCø0 with k,1 at any velocityV,VD.

One can also show that for the limiting casesVD→` and
V→VD the prefactor is limited and positively defined as

0 , sC0 − 2DGCV/VD
2 d , `. s46d

To obtain these limiting cases, one can take the expression
for GC from the balance(44) in the form GC=−s1
−kdVC0/ fDs1−V2/VD

2 dg, and one gets the relationsC0

−2DGCV/VD
2 d=C0f1+2s1−kdsV2/VD

2 d / s1−V2/VD
2 dg. From

this it follows the first positive asymptotic: sC0

−2DGCV/VD
2 d=C0.0 with VD→`. For obtaining the sec-

ond asymptotic withV→VD, let us consider the interface
velocity in the vicinity of the diffusion speed, i.e., the veloc-

ity V=VD−«, 0ø«!1. Then, forV→VD, one can obtain the
prefactor in the form

USC0 −
2DGCV

VD
2 DU

V=VD−«

=UC0S1 +
2f1 − ksVdgV2/VD

2

1 − V2/VD
2 DU

V=VD−«

= C0S1 + f1 − ksVDdg
VD

«
+ VDUdksVd

dV
U

V=VD

− 2f1 − ksVDdgD . s47d

From this expression follows two consequences. First, in the
case of partition solidification withV=VD, one getsksVDd
Þ1. In this case, the prefactor tends to infinity with«→0.
Second, with the complete solute trapping,ksVDd=1 and
dksVd /dVù0, one gets forV→VD that the prefactor has a
positive sign and limited magnitude for the second
asymptotic. This yields

0 , C0S1 +
2f1 − ksVdgV2/VD

2

1 − V2/VD
2 D

= C0S1 + VDUdksVd
dV U

V=VD

D , `. s48d

Consequently, as it is given by Eq.(46), sC0−2DGCV/VD
2 d is

positively defined term also for the local equilibrium case,
VD→`, and local nonequilibrium case,V→VD, if the com-
plete solute trapping occurs,ksVDd=1. This term influences
only the speed of decreasing/increasing of the amplitude of
perturbation, but not a selection of the stable mode itself.

From Eqs.(43) and(45), taking into account Eq.(41), the
expression for the functiond−1dd /dt can be obtained. The
sign of d−1dd /dt defines the condition of decreasing,
d−1dd /dt,0, or increasing,d−1dd /dt.0, of the interfacial
perturbation in time. Withd−1dd /dt=0 one has the marginal
(neutral) stability of the interface[8,11].

IV. MARGINAL STABILITY

A. The criterion of marginal stability

We now consider marginal stability for the neutral stabil-
ity of a small perturbation on the planar interface,d−1dd /dt
=0. From Eqs.(43) and(45), one can obtain expressions for
the values ofa andb. These are

a = KLGL
vL − V/aL

KLvL + KSvS
+ KSGS

vS− V/aS

KLvL + KSvS
, s49d

b = GC

vC − V/fDs1 − V2/VD
2 d1/2g

vC − s1 − kdV/fDs1 − V2/VD
2 d1/2g

, V , VD,
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b = 0, V ù VD. s50d

The system of Eqs.(41), (49), and(50) allows one to obtain
a relation for the constant front velocityV and the frequency
v of a perturbation in the steady-state regime by excludinga
andb. This relation can be considered as a final form for the
condition of marginal stability.

Let us introduce the following functions of stability:

jL =
vL − V/aL

KLvL + KSvS
, s51d

jS=
vS+ V/aS

KLvL + KSvS
, s52d

jC =
vC − V/fDs1 − V2/VD

2 d1/2g
vC − s1 − kdV/fDs1 − V2/VD

2 d1/2g
, V , VD,

jC = 0, V ù VD. s53d

The functionsjL andjS in Eqs.(51) and (52) coincide with
those derived by Trivedi and Kurz[11]. However, as Eq.(53)
shows, the functionjC of concentrational stability differs
from the corresponding function derived previously in Ref.
[11]. As it follows from Eq.(53), within the local equilibrium
limit, VD→`, one gets the special casejC=svC

−V/Dd / fvC−s1−kdV/Dg which coincides with the result
given in Ref.[11]. WhenV,VD, the functionjC given by
Eq. (53) takes corrections for the relation of the interface
velocity V and diffusion speedVD. With VùVD, the exact
equalityjC=0 takes place. This equality is the consequence
of solution of the problem of local nonequilibrium solute
diffusion which takes into account the finite speedVD in the
bulk liquid. Thus, after substituting Eqs.(49) and (50) into
Eq. (41) and taking into account Eqs.(51)–(53), one can
obtain the criterion of marginal stability. This yields

Gv2 + KLGLjL + KSGSjS− mGCjC = 0, V , VD,

Gv2 + KLGLjL + KSGSjS= 0, V ù VD. s54d

In the local equilibrium limit,VD→`, criterion(54) transfers
into the criterion of marginal stability obtained in Ref.[11]
on the basis of a local equilibrium approach to solute diffu-
sion transport. The introduction of the finite diffusion speed
VD into the model leads to the qualitatively new result, which
is related to the transition to completely partitionless solidi-
fication. As Eq.(54) shows, with the finite interface velocity
VùVD, the solute diffusion ahead of the rapid interface is
absent[see solutions(31)–(33)], and the morphological sta-
bility is defined by the relation of the stabilizing forceGv2,
due to surface energy, and the contributionKLGLjL
+KSGSjS of temperature gradients,GL andGS.

Using criterion (54), one can analyze qualitatively two
different situations for solidification when(i) the latent heat
is removed from the interface inside the undercooled liquid
phase, and(ii ) the latent heat is removed from the interface
through the solid crystal phase. In case(i), one gets
KLGLjL+KSGSjS,0, and the temperature gradient is desta-

bilizing the interface. Therefore, if the absolute morphologi-
cal stability is not reached by the steady balanceGv2

=KLGLjL+KSGSjS, the interface is unstable, and the result-
ing interface may exhibit a cellular-dendritic pattern. In case
(ii ), with KLGLjL+KSGSjS.0, the total heat flux is directed
from the interface to the solid phase and the temperature
gradient, in addition to the surface energy, stabilizes the form
of the interface. In this case, withV,VD, the morphological
stability depends on relation of a destabilizing action of the
force mGCjC and the stabilizing forceGv2+KLGLjL
+KSGSjS. With the interface velocityVùVD, solidification
leads to the chemically partitionless pattern. A destabilizing
action on the front is absent and the interface itself remains
linearly stable against any small interfacial perturbation.

B. Characteristic size for crystal microstructure

According to the marginal stability hypothesis suggested
in Ref. [31] and developed in Refs.[2,12], a characteristic
size R selected by crystal microstructure in solidification
(e.g., the dendrite tip radius) is related to the critical wave-
lengthl of interface perturbation as

R; l =
2p

v
. s55d

Assuming equality for thermophysical parameters of the liq-
uid and solid, one can obtain characteristic sizeR from Eqs.
(54) and (55). This yields withV,VD,

R= 1 G/s

mGCj̄C −
1

2
sGLj̄L + GSj̄Sd2

1/2

, s56d

and withVùVD

R= 1 G/s

−
1

2
sGLj̄L + GSj̄Sd2

1/2

. s57d

In Eqs. (56) and (57) the following designations are ac-
cepted:

s =
1

4p2 , s58d

j̄L = 1 −
1

S1 +
1

sPT
2D1/2, s59d

j̄S= 1 +
1

S1 +
1

sPT
2D1/2, s60d
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j̄C = 1 +
2k

1 − 2k − S1 +
1 − V2/VD

2

sPC
2 D1/2 s61d

with PT=VR/2a andPC=VR/2D as the thermal and solutal
Peclet numbers, respectively. As we noted above, Eq.(57) is
true only for solidification in an undercooled liquid, i.e.,
when the temperature gradient is negative. For the case of
solidification in the positive temperature gradient the abso-
lute morphological stability takes place at the interface ve-
locity V smaller than the diffusion speedVD in the liquid.

V. ABSOLUTE STABILITY

A. Nonisothermal solidification

Let us consider Eq.(54) in the limit of large wavelengths
l@1, which is true forv!1. With this condition, from Eqs.
(51) and (53) one can yield expansions for the functionsjL
andjC in the following form:

jL =
aL

2v2

KLV2 ,

jC =
v2D2s1 − V2/VD

2 d
kV2 , V , VD,

jC = 0, V ù VD. s62d

Substituting these expressions into the criterion of mar-
ginal stability(54) at GS=0, we get the criterion of absolute
morphological stability for the planar interface. This criterion
can be written in the form of the following nonlinear equa-
tion for the velocityVA of absolute stability:

VA = VA
TsVd + VA

CsVd, s63d

where

VA
TsVd = −

aL

G
SaLGL

V
D s64d

is the velocity of absolute thermal stability, and

VA
CsVd =

D

Gk
SDs1 − V2/VD

2 dmGC

V
D , VD s65d

is the velocity of absolute chemical stability.
The velocity VA

T of absolute thermal stability, Eq.(64),
shows the relationship between the contribution of the tem-
perature gradientGL and capillary parameterG. With the
negative temperature gradientGL,0 the range of morpho-
logical stability shrinks. Conversely, the positive temperature
gradientGL.0 extends the range of the velocities at which
the interface is linearly stable. The velocityVA

C of absolute
chemical stability, Eq.(65), defines the contribution of the
concentrational gradientGC and capillary parameterG. This
velocity is always less than the diffusion speed,VA

C,VD,
because the velocityVA

C is defined by the steady balance
between surface tension, given by the capillary parameterG,
and the gradientGC of solute concentration, existing up to

the completion of solute diffusion. Consequently, Eqs.
(63)–(65) exhibit a competition of destabilizing and stabiliz-
ing forces. With the velocity,V,VA, the planar interface is
perturbed with a possible originating of the cellular-dendritic
patterns. As the solidification velocity increases,V.VA, the
planar interface becomes morphologically stable against any
small perturbation of its form.

To clarify contributions from both the thermal and solute
diffusion on the absolute stability of the interface, we define
the gradients in Eqs.(64) and (65) in explicit form. For the
thermal and concentrational gradients at the unperturbed pla-
nar interface we use a solution of the local-nonequilibrium
problem[17]. From the solution, one gets

GL = −
TQV

aL
,

GC = −
s1 − kdVC`

kDs1 − V2/VD
2 d

, V , VD,

GC = 0, V ù VD, s66d

whereTQ is a unit of undercooling equal toQ/xL, andC` is
the solute concentration in the liquid far from the interface.
From the second expression in Eq.(66), it follows that when
the solute diffusion is absent ahead of the interface withV
ùVD, the gradient of the solute concentration is zero exactly.
Substitution of Eq.(66) into Eqs.(63)–(65) gives the expres-
sion for the absolute stability of the interface. This yields

VA = VA
T + VA

C =
aL

G
DTT +

D

Gk
DTC, V , VD,

VA = VA
T =

aL

G
DTT, V ù VD, s67d

whereDTT=TQ is the thermal undercooling, which is neces-
sary for solidification with the planar interface on the thermal
scale, andDTC=sk−1dmC̀ /k is the constitutional under-
cooling, which is necessary for solidification with the planar
interface on the scale of solute diffusion. Additionally,DTC
is the nonequilibrium temperature interval of solidification
between liquidus and solidus lines in the kinetic diagram of
phase state.

The criterionVA
T=aLDTT/G in Eq. (67) is the same as that

which has been obtained by Trivedi and Kurz[11] using the
advanced model for large growth velocities. The criterion
VA

C=DDTC/G=Dsk−1dmC̀ / sGk2d in Eq. (67) is similar to
that which has been obtained by Mullins and Sekerka[8] for
the case of small growth velocities, and rederived by Trivedi
and Kurz[11] for the case of rapid solidification. In addition
to this treatment, by introducing the finite speedVD into the
model we reach a qualitative result. At the finite velocity,
VùVD, due to the absence of the solute diffusion[GC=0,
Eq. (66)], the interval between nonequilibrium liquidus and
solidus lines is equal to zero,DTC=0. These lines converge
in the kinetic phase diagram withVùVD [17], and the abso-
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lute stability of the planar interface is defined only by the
undercoolingDTT, and relation between the thermal diffusiv-
ity aL and capillary parameterG [Eq. (67)].

B. Isothermal solidification

In the analysis of the criterion of marginal stability(54), a
special interest is given to the case in which the form of the
interface is defined by the competition between stabilizing
force Gv2 due to surface energy, and destabilizing force
mGCjC due to gradientGC of solute concentration. Assuming
the zero temperature gradientGL=0 in Eq. (63), one can
obtain an explicit expression for the condition of absolute
chemical stability of the interface,VA=VA

C. Using the expres-
sion for GC from Eq. (66), one gets

VA =
mDsk − 1dC`

Gk2 , VD. s68d

The form of this expression coincides with the expression
given for the case of local equilibrium solute diffusion trans-
port atVD→` andV!VD [11]. However, a final form of the
function VAsC`d is defined by the functions of solute parti-
tioning ksVd and the slopemsVd of liquidus line in the kinetic
phase diagram. The behavior of theses functions is rather
different for the cases of local equilibrium and local nonequi-
librium solute diffusion[17,32].

VI. DISCUSSION

In the first part of the discussion, we synthesize our sys-
tem of equations to give the self-consistent model, which is
adopting the deviation from local equilibrium in the solute
diffusion field for all functions. We discuss the solute parti-
tioning functions and the expression for the slope of kinetic
liquidus which take into account the deviation from local
equilibrium, both at the interface and in the bulk liquid
around the interface. Then, in the second part of the discus-
sion, we present a quantitative evaluation of the discrepan-
cies between the present model and the model in which the
local nonequilibrium is taken only at the interface. These are
compared with experimental data on the absolute stability of
the planar interface.

A. Solute partitioning and kinetic liquidus

The boundary condition for solute diffusive transport can
be given on the basis of the continuous growth model
(CGM) [33]. The CGM gives the solute partitioning function
at the solid-liquid interface, which, in the dilute solution ap-
proximation, is described by Refs.[33,34]

ksVd =
ke + V/VDI

1 + V/VDI
, s69d

whereVDI is the speed of diffusion at the interface, andke is
the value of the equilibrium partition coefficient withV→0.
The deficiency of the function(69) is in the difficulty to
describe the complete solute trapping at the finite interface
velocity, i.e., it predictsk→1 only with V→`. However, as
it has been shown in numerous experiments(see, e.g., Ref.

[35]), a transition to partitionless solidification occurs at a
finite solidification velocity. Furthermore, the molecular dy-
namic simulation has shown[36] that the transition to the
complete solute trapping is observed at finite crystal growth
velocity. Therefore, in addition to Eq.(69), a generalized
function for solute partitioning, in the case of local nonequi-
librium solute diffusion within the approximation of a dilute
alloy, has been introduced[37]. This yields

ksVd =
kes1 − V2/VD

2 d + V/VDI

1 − V2/VD
2 + V/VDI

, V , VD,

ksVd = 1, V ù VD, s70d

where VDI is the interfacial diffusion speed withVDI øVD
[18,37]. In the local equilibrium limit, i.e., when the bulk
diffusive speed is infinite,VD→`, expression(70) reduces
to the functionksVd, which takes into account the deviation
from local equilibrium at the interface only, Eq.(69). In ad-
dition to the previous model[33,34], the functionksVd de-
scribed by Eq.(70) includes the deviation from local equi-
librium not only at the interface(introducing interfacial
diffusion speedVDI), but also in the bulk liquid(introducing
diffusive speedVD in bulk). As Eq.(70) shows, the complete
solute trapping,ksVd=1, proceeds atV=VD.

A thermodynamic approach applied to the solidification of
a binary system[38] provided two models for the solute
trapping with and without solute drag[21,39]. These models
give a shift from local equilibrium at the interface which can
be expressed in unified form for the slopemsVd of kinetic
liquidus by the following equation:

msVd =
me

1 − ke
H1 − k + fk + s1 − kdd0gln S k

ke
DJ . s71d

Hered0=0 is for the model of solute trapping without solute
drag andd0=1 is for the model of solute trapping with solute
drag. Introducing Eq.(69) into Eq. (71), one obtains the
constant liquidus slopem (independent ofV) only with the
infinite interface velocity,V→`.

Using the results of the local nonequilibrium thermody-
namic analysis[32], one arrives to the slope of the liquidus
line in the following form:

msVd =
me

1 − ke
H1 − k + ln S k

ke
D + s1 − kd2 V

VD
J, V , VD,

msVd =
meln ke

ke − 1
, V ù VD. s72d

With V,VD, the functionmsVd includes the function de-
scribed by Eq.(71) for the solute trapping with solute drag
sd0=1d and the additional terms1−kd2V/VD. This term arises
from the analysis of the Gibbs free energy, taking into ac-
count local nonequilibrium solute diffusion around the inter-
face. It is necessary to note that the functionmsVd described
by Eq. (72) plays a crucial role for self-consistency of the
theory of local nonequilibrium solidification. This form of
the function has been used in a self-consistent model for
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rapid dendritic growth and gave quantitative agreement with
experimental data on kinetics of alloy solidification[18,29].
In particular, the self-consistent dendritic growth model, in-
cluding Eq.(72), predicts the breakpoint atV=VD with good
agreement of data on a number of investigated alloys. Fur-
thermore, Eq.(72) gives us the ability to describe a transition
from the growth kinetics, with solute-drag effect at small and
moderate solidification velocities(arising with the developed
solute profile ahead of the interface), to the growth kinetics
without solute drag at high solidification velocities(with the
degeneration of the solute profile ahead the interface)
[32,40]. Thus, Eqs.(70) and (72) close the system of equa-
tions (14)–(19) for the self-consistent analysis of morpho-
logical stability.

B. Comparison with experimental data

To discuss the results obtained for the interfacial stability,
we now compare the model predictions for the absolute sta-
bility condition (68) in both cases of solidification, namely,
with local equilibrium solute diffusion and with local non-
equilibrium solute diffusion transports. Substituting func-
tions (69)–(72) into Eq. (68), we analyze the absolute stabil-
ity of the planar interface for different velocities. We stress
two important points regarding the choice of the expression
for the slope of kinetic liquidus given by Eq.(71). First, the
result on rapid dendritic growth[18,29] gives evidence to the
confluence of all model predictions at small undercoolings
and low growth velocities. Disagreement of the kinetic
curves begins from the undercooling approximately corre-
sponding to the undercooling for the absolute chemical sta-
bility at moderate growth velocities. Therefore, our present
discussion for interfacial stability is limited by the moderate
interface velocities, when the model’s predictions(with or
without taking local nonequilibrium in bulk liquid) begin to
disagree. Second, in this region of velocities, the local non-
equilibrium approach to rapid solidification gives a similar
result with the model, which takes into account the deviation
from local equilibrium only at the interface, with the solute-
drag effect(see the analysis presented in Refs.[32,40]). This
fact is due to the existence of the developed solute profile
ahead of the interface at small and moderate velocities, when
the solute drag may appear at the interface. Consequently, in
order to evaluate the disagreement between the model and

experimental data, we choose the expression for the slope of
the kinetic liquidus, which adopts the solute-drag effect, i.e.,
it is chosen in the following calculations whered0=1 for Eq.
(71).

Using parameters of an Al-Fe alloy from Table I, one can
calculate the curve for critical concentration,C`sVd, which
gives a threshold for interface instability. As it can be seen
from Fig. 3, two regions of the interfacial existence may
occur: the planar interface is absolutely stable below the
curves and the interface breaks down in the regions above
the curves given by the functionsC`sVd. In comparison with
the model with the local equilibrium diffusion and deviation
from local equilibrium at the interface only[Eqs.(68), (69),
and (71)], the present model for interface stability with the
deviation from local equilibrium, both at the interface and in
the bulk liquid [Eqs. (68), (70), and (72)], defines a curve
C`sVd which is limited by the diffusion speedVD for mor-
phological stability of the interface. This limit exists due to a
steady balance between the stabilizing capillary force and the
destabilizing force defined by the concentrational gradient,
which still acts on the interface up to the finishing of diffu-
sion, i.e., until the pointV=VD.

TABLE I. Physical parameters used in calculations of the limit of absolute stability of the planar interface
in solidifying binary alloys.

Parameter Notation Dimension Al-Fe Si-Sn

Diffusion coefficient DL m2/s 1.7310−9 a 2.5310−8 b

Partition coefficient ke 0.03a 0.016b

Liquidus slope me K/at.% −7.3a −4.6b

Gibbs-Thomson coefficient G K m 1310−7 a 1.3310−7 b

Interface diffusion speed VDI m/s 7 17b

Diffusion speed in bulk liquid VD m/s 10 17.5

aData taken from Ref.[41].
bData taken from Ref.[42].

FIG. 3. VelocityVA of absolute chemical stability vs solute con-
centrationC` for Al-Fe alloy. Dashed curve corresponds to solution
of Eqs. (68), (69), and (71) with solute-drag effect. Solid curve
corresponds to solution of Eqs.(68), (70), and(72). Dashed-dotted
line V=VD represents the limiting velocity for the absolute interface
stability.
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For a quantitative comparison of the model predictions we
have chosen experimental results on interface stability during
rapid solidification of a Si-Sn alloy as presented by Hoglund
and Aziz in Ref.[42]. These authors measured a critical con-
centration of Sn for interface breakdown in a steady-state
solidification after pulsed laser melting. Using the param-
eters of the Si-Sn alloy from Table I, the model predictions
for the functionC`sVd are compared quantitatively with ex-
perimental results from Ref.[42]. As is shown in Fig. 4, the
predictions of the model for interface stability with the local
nonequilibrium diffusion[Eqs.(68), (70), and(72)] are con-
sistent with the experiment.

At the concentration Sn=0.02 atomic fraction(see the ex-
treme right experimental point in Fig. 4), the discrepancy
between the model with local equilibrium solute diffusion
(dashed curve in Fig. 4) and experiment gives the value of
38.90%(see Table II). At the same alloy’s concentration, the
present model(solid curve in Fig. 4) gives the discrepancy
with experiment of 16.93%(see Table II). Consequently,

even better comparison with the available experimental data
can be obtained with using the present model of local non-
equilibrium solidification.

VII. CONCLUSIONS

Morphological stability of the planar interface in rapid
solidification of nonisothermal binary system has been con-
sidered. We have taken into account the fact that the high
rate of solidification process leads to the absence of a local
thermodynamic equilibrium in the solute diffusion field and
at the solid-liquid interface. The presently developed model
is self-consistent: the main governing equations, Sec. II, and
the interface conditions for solute trapping and kinetic liqui-
dus, Sec. VI, are consistent with the formalism of extended
thermodynamic approach to rapid solidification[32]. Using
the model of local nonequilibrium rapid solidification, our
analysis of morphological stability extends the previous
analysis of Trivedi and Kurz[11], which has been performed
to advance the treatment of Mullins and Sekerka[8] to the
case of rapid solidification. The main outcomes of this analy-
sis are summarized as follows.

(i) For the velocities equal to or greater than the diffusion
speedVùVD from solutions(31)–(33) it follows that the
field of concentration does not depend on a form of the in-
terfacial perturbation and it is equal to the initial(nominal)
concentration,Csx,zd=C`. This result is in agreement with
the previous results for planar and parabolic interfaces
[17,30]. Solutions(31)–(33) have a clear physical meaning: a
source of concentrational disturbances, i.e., the perturbed in-
terface, cannot disturb a binary liquid ahead of itself if the
interface velocity is equal to or greater than the maximum
speed of these disturbances.

(ii ) The obtained criterion of the marginal stability, Eq.
(54), defines a wavelength of perturbation for the neutral
stability. For V,VD, the neutral stability is defined by a
balance of the stabilizing force, due to surface energy, desta-
bilizing force, due to concentrational gradientGC, and the
contribution of temperature gradientsGL and GS. Qualita-
tively, a result can be obtained from the criterion for the front
velocity of VùVD, i.e., for an absence of the solute diffusion
ahead of the interface. As it follows from the second equa-
tion in Eq. (54), the morphological stability of the interface
is defined only by the relation between the thermodynamic

FIG. 4. Critical concentrationC` above which planar interface
is unstable. Experimental points correspond to solidification of the
Si-Sn alloy [42]. Circles are taken from measurements performed
on bulk single crystal Si(100), and squares are taken from measure-
ments using Sn-implanted Si-on-sapphire(SOS) samples. Curves
are given by the models for interfacial absolute stability: dashed,
with local equilibrium diffusion and solute-drag effect, Eqs.(68),
(69), and(71); solid, with the local nonequilibrium diffusion, Eqs.
(68), (70), and(72). Dashed-dotted lineV=VD represents the limit-
ing velocity for the absolute interface stability.

TABLE II. Discrepancy between theoretical predictions and experiment for the absolute chemical stability
of the planar interface in the Si-Sn=0.02 atomic fraction alloy.

Absolute chemical stability
Velocity
sm/sd

Definition
of discrepancy

Value
of discrepancys%d

Local equilibrium solute diffusion,
Eqs.(68), (69), and(71)

VA
s1d=15.5 VA

s1d−VA
sexpd

VA
s1d 100%

38.90

Local nonequilibrium solute diffusion,
Eqs.(68), (70), and(72)

VA
s2d=11.4 VA

s2d−VA
sexpd

VA
s2d 100%

16.93

Experiment, Ref.[42] VA
sexpd=9.47
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stabilizing force, due to the surface tension, and the driving
force of the morphological instability, due to the negative
thermal gradient in the undercooled liquid. In the case of
directional solidification with the positive thermal gradient,
the destabilizing action on the interface is absent atVùVD,
and the interface remains linearly stable against small pertur-
bations of its form.

(iii ) Absolute stability of the planar interface is consid-
ered as a steady balance between destabilizing force(due to
the concentrational gradient), the thermal contribution(due
to the thermal gradient), and the stabilizing force(due to
surface tension). The velocityVA of the absolute interface
stability is obtained as a sum of the velocityVA

T for thermal
stability and velocityVA

C for chemical stability defined by Eq.
(67). VA

C is the same as what was obtained by Mullins and
Sekerka[8] for the case of small growth velocities. It was
rederived by Trivedi and Kurz[11] for the case of rapid
solidification. Introduction of the finite speedVD into the
model gives the qualitative result: with the absence of the
solute diffusion atVùVD, the absolute stability of a planar
interface is defined only by the thermal undercooling and
relation between the thermal diffusivityaL and capillary pa-

rameterG [Eq. (67)]. For an isothermal solidification, the
present analysis shows the limiting boundary equals to the
diffusion speedVD for the region of morphological instabil-
ity [see Eq.(68) and Fig. 3].

(iv) The predictions of the present model for the critical
concentration above which a planar interface becomes un-
stable[see Eqs.(68), (70), and(72)] are compared with the
previous model, which adopts the deviation from local equi-
librium at the interface only[see Eqs.(68), (69), and (71)],
and with the experimental data obtained for solidification of
the Si-Sn alloy[42]. As it is shown in Fig. 4 and it follows
from numerical evaluation of the theoretical predictions sum-
marized in Table II, the predictions of the model are consis-
tent with the experiment for a whole region of the interface
velocities investigated.
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